

SØREN KELSTRUP SKOVSEN

H.C. Andersens vej 45, 8230 Åbyhøj, Denmark, +45 3023 6663
soren@theailab.dk Google scholar LinkedIn

EDUCATION

<i>Graduate Institutions</i>	<i>Field</i>	<i>Specialization</i>	<i>Degree</i>	<i>Period</i>
Cornell Tech	ECE	Wearable computer vision	Visiting PhD Student	2020 - 2020
Aarhus University	ECE	Image based machine learning	PhD	2017 - 2021
UC San Diego	ECE	Machine learning	2x Trimester Exchange	2015 - 2016
Aarhus University	ECE	Signal processing	Master of Engineering	2015 - 2017

WORK EXPERIENCE

AI Lab <i>Founder, Developer</i> predominantly on agricultural vision systems including hardware design and assembly, quality assurance, data analysis, and model interpretation.	2018 -
AI Lab freelancer, Trifork <i>Tech-lead, Developer</i> on vision AI projects.	2025 - 2026

RESEARCH EXPERIENCE

AI Lab, DK <i>Commercial partner</i> Project: <i>Enhancing working conditions and strengthening the work force through digital and data technologies – the potential of robotics and augmented reality in agriculture.</i> Funded by Horizon Europe.	2025 -
Dept. of Electrical and Computer Engineering, Aarhus University, DK <i>Postdoctoral Researcher</i> Project: <i>Micro volume weed sprayer using real-time computer vision and organic herbicides.</i> Funded by United States Department of Agriculture.	2023 - 2025
Dept. of Electrical and Computer Engineering, Aarhus University, DK <i>Postdoctoral Researcher</i> Project: <i>Species composition prediction and weed recognition in mixed crops.</i> Funded by United States Department of Agriculture.	2021 - 2024
Dept. of Engineering, Aarhus University, DK <i>Graduate Researcher</i> Project: <i>Biomass composition prediction of mixed crops using image based machine learning.</i> Funded by Innovation Fund Denmark and Green Development and Demonstration Programme. Supervisor: Henrik Karstoft, Professor. Co-supervisor: Rasmus Nyholm Jørgensen, Senior Researcher.	2017 - 2021

SELECTION OF REFEREED PUBLICATIONS

Dyrmann M; **Skovsen, SK**; Christiansen PH; Kragh MF; Mortensen AK. 2024. *High-speed camera system for efficient monitoring of invasive plant species along roadways.* F1000Res. 2024 Oct 4. Published October 4th 2024.

Skovsen, SK; Laursen, MS; Kristensen, RK; Rasmussen, J. et al. 2021. *Robust Species Distribution Mapping of Crop Mixtures Using Color Images and Convolutional Neural Networks*. Sensors 2021, 21, 175. Published December 29th 2020.

Skovsen, SK; Laursen, MS; Gislum, R; Eriksen, J. et al. 2019. *Species Distribution Mapping of Grass Clover Leys using Images for Targeted Nitrogen Fertilization*. Precision agriculture '19, 639 - 645. Published July 8th 2019.

Skovsen, SK; Dyrmann, M; Mortensen, AK; Laursen, MS. et al. *The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture*. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2019. Published June 2019.

Christiansen, MP; Laursen, MS; Jørgensen, RN; **Skovsen, SK** et al. 2017. *Designing and Testing a UAV Mapping System for Agricultural Field Surveying*. Sensors 17, no. 12: 2703. Published November 23rd 2017.

Skovsen, SK; Dyrmann, M; Mortensen, AK; Steen, KA. et al. 2017. *Estimation of the Botanical Composition of Clover-Grass Leys from RGB Images Using Data Simulation and Fully Convolutional Neural Networks*. Sensors 17, no. 12: 2930. Published December 17th 2017.